\(\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx\) [423]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 56 \[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.36, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {4349, 3893, 212} \[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[1/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

(Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c + d*
x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx \\ & = -\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.70 \[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*S
in[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(91\) vs. \(2(45)=90\).

Time = 1.87 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.64

method result size
default \(-\frac {\sqrt {2}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )}{d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(92\)

[In]

int(1/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/d/a*2^(1/2)*(a*(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos
(d*x+c)+1))^(1/2))/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 160, normalized size of antiderivative = 2.86 \[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\sqrt {2} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{2 \, \sqrt {a} d}, -\frac {\sqrt {2} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right )}{d}\right ] \]

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d
*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/(sqrt(a)*d), -sqrt(2)*sqrt(-1/a)*
arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c))/d]

Sympy [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate(1/cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a*(sec(c + d*x) + 1))*sqrt(cos(c + d*x))), x)

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.61 \[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - \sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{2 \, \sqrt {a} d} \]

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(c
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))/(sqrt(a)*d)

Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {a \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^(1/2)), x)